Verifying Safety and Persistence Properties of Hybrid Systems Using Flowpipes and Continuous Invariants

نویسندگان

  • Andrew Sogokon
  • Paul B. Jackson
  • Taylor T. Johnson
چکیده

We propose a method for verifying persistence of nonlinear hybrid systems. Given some system and an initial set of states, the method can guarantee that system trajectories always eventually evolve into some specified target subset of the states of one of the discrete modes of the system, and always remain within this target region. The method also computes a time-bound within which the target region is always reached. The approach combines flow-pipe computation with deductive reasoning about invariants and is more general than each technique alone. We illustrate the method with a case study concerning showing that potentially destructive stick-slip oscillations of an oil-well drill eventually die away for a certain choice of drill control parameters. The case study demonstrates how just using flow-pipes or just reasoning about invariants alone can be insufficient. The case study also nicely shows the richness of systems that the method can handle: the case study features a mode with non-polynomial (nonlinear) ODEs and we manage to prove the persistence property with the aid of an automatic prover specifically designed for handling transcendental functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Differential Invariants of Hybrid Systems as Fixedpoints

We introduce a fixedpoint algorithm for verifying safety properties of hybrid systems with differential equations that have right-hand sides that are polynomials in the state variables. In order to verify non-trivial systems without solving their differential equations and without numerical errors, we use a continuous generalization of induction, for which our algorithm computes the required di...

متن کامل

Flow*: An Analyzer for Non-linear Hybrid Systems

The tool FLOW* performs Taylor model-based flowpipe construction for non-linear (polynomial) hybrid systems. FLOW* combines well-known Taylor model arithmetic techniques for guaranteed approximations of the continuous dynamics in each mode with a combination of approaches for handling mode invariants and discrete transitions. FLOW* supports a wide variety of optimizations including adaptive ste...

متن کامل

A Dynamic Logics of Dynamical Systems

We study the logic of dynamical systems, that is, logics and proof principles for properties of dynamical systems. Dynamical systems are mathematical models describing how the state of a system evolves over time. They are important for modeling and understanding many applications, including embedded systems and cyber-physical systems. In discrete dynamical systems, the state evolves in discrete...

متن کامل

Hybrid Systems

Hybrid systems are models for complex physical systems and are defined as dynamical systems with interacting discrete transitions and continuous evolutions along differential equations. With the goal of developing a theoretical and practical foundation for deductive verification of hybrid systems, we introduce differential dynamic logic as a new logic with which correctness properties of hybrid...

متن کامل

A Temporal Dynamic Logic for Verifying Hybrid System Invariants

We combine first-order dynamic logic for reasoning about possible behaviour of hybrid systems with temporal logic for reasoning about the temporal behaviour during their operation. Our logic supports verification of hybrid programs with first-order definable flows and provides a uniform treatment of discrete and continuous evolution. For our combined logic, we generalise the semantics of dynami...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017